Math 210A Lecture 6 Notes

Daniel Raban

October 10, 2018

1 Inverse Limits, Direct Limits, and Adjoint Functors

1.1 Inverse and direct limits

Example 1.1. Consider the colimit of this diagram in Ab:

$$\mathbb{Z}/p\mathbb{Z} \xrightarrow{\cdot p} \cdots \xrightarrow{\cdot p} \mathbb{Z}/p^n\mathbb{Z} \xrightarrow{\cdot p} \mathbb{Z}/p^{n+1}\mathbb{Z} \xrightarrow{\cdot p} \cdots$$

Then $\lim_{n \to \infty} \mathbb{Z}/p^n \mathbb{Z} \cong \mathbb{Q}_p/\mathbb{Z}_p \subseteq \mathbb{Q}/\mathbb{Z}$, where \mathbb{Q}_p is the free field of \mathbb{Z}_p . We can also show that $\mathbb{Q}_p/\mathbb{Z}_p : \{a \in \mathbb{Q}/\mathbb{Z} : p^n a = 0 \text{ for some } n \ge 0\}.$

Definition 1.1. A directed set I is a set with a partial ordering such that for all $i, j \in I$, there is a $k \in I$ such that $i \leq k, j \leq k$.

Definition 1.2. A directed category is a category where the objects are elements of a directed set I, and there are morphisms $i \to j$ iff $i \leq j$. A codirected category \mathcal{I} is a category where \mathcal{C}^{op} is directed.

Definition 1.3. Suppose \mathcal{I} is codirected with $\operatorname{Obj}(\mathcal{I}) = I$ and $F : \mathcal{I} \to \mathbb{C}$. A limit of F is called the **inverse limit** of the F(i) for all $i \in I$. We write $\lim F = \lim_{i \in I} F(i)$.

If \mathcal{I} is directed with $Obj(\mathcal{I}) = I$ and $F : \mathcal{I} \to \mathcal{C}$. A colimit of F is called the **direct limit**

of the F(i) for all $i \in I$. We write colim $F = \lim_{i \in I} \operatorname{colim} F$.

Definition 1.4. A small category \mathcal{I} is **filtered** if

1. for all $i, j \in I$, there exists $k \in I$ such that there exist morphisms $i \to k, j \to k$,

2. for all $\kappa, \kappa': i \to j$ in I there exists a morphism $\lambda: j \to k$ such that $\lambda \circ \kappa = \lambda \circ \kappa'$

A category it **cofiltered** if the opposite category is filtered.

Cofiltered limits and diltered limits generalize inverse and direct limits, respectively.

Example 1.2. Let *I* be cofiltered with an initial object *c*. Then if $F : I \to C$, $\lim F = F(e)$.

1.2 Adjoint functors

Definition 1.5. A functor $F : \mathcal{C} \to \mathcal{D}$ is **left adjoint** to a functor $G : \mathcal{D} \to \mathcal{C}$ if for each $C \in \mathcal{C}, D \in \mathcal{D}$, there exist bijections $\eta_{C,D} : \operatorname{Hom}_{\mathcal{D}}(F(C), D) \to \operatorname{Hom}_{\mathcal{C}}(C, G(D))$ such that η is a natural transformation between functors $\mathcal{C}^{op} \times \mathcal{D} \to \operatorname{Sets}$. That is,

G is **right adjoint** to F if F is left adjoint to G.

Remark 1.1. If $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ are quasi-inverses and $\eta : \mathrm{id}_{\mathcal{C}} \to G \circ F$ is a natural isomorphism, then we can define $\phi_{C,D} : \mathrm{Hom}_{\mathcal{D}}(F(C), D) \to \mathrm{Hom}_{\mathcal{C}}(C, G(D))$ given by $h \mapsto G(h) \circ \eta_C$. Check that $\phi_{C,D}$ is a bijection. So F is left-adjoint to G. Similarly, G is left-adjoint to F.

Proposition 1.1. Suppose S is a set, and consider h_S : Set \rightarrow Set given by $h_S(T) = Maps(S,T)$ and $h_S(f:T \rightarrow T') = g \mapsto f \circ g$. Then h_S is right adjoint to t_S : Set \rightarrow Set given by $t_S(T) = T \times S$ and $t_S(f) = (f, id_S) : T \times S \rightarrow T' \times S$.

Proof. We need to find a bijection $\tau_{T,U}$: Maps $(T \times S, U) \to Maps(T, Maps(S, U))$. We can send $f \mapsto (t \mapsto (s \mapsto f(s,t)))$. To show that this is a bijection, we can go backward by sending $\varphi \mapsto ((t,s) \mapsto \varphi(t)(s))$. Check that these maps are inverses of each other and that this is a natural transformation.

Proposition 1.2. Suppose all limits $F: I \to C$ exist. Then the functor $\lim : \operatorname{Fun}(I, \mathcal{C}) \to \mathcal{C}$ given by $F \mapsto \lim F$ and $(\eta : F \to F') \mapsto (\lim F \mapsto \lim F')$ has a left adjoint $\Delta : \mathcal{C} \to \operatorname{Fun}(I, \mathcal{C})$ such that $\Delta(A) = c_A$ is the constant functor $I \to \mathcal{C}$ with value A.

Proof. We want a bijection η : Hom_{Fun(*I*,*C*)}(c_A, F) \rightarrow Hom_{*C*}($A, \lim F$). Let $\eta : c_A \rightarrow F$ be $\eta_i : \underbrace{c_A(i)}_{=A} \rightarrow F(i)$ such that

for all $f: i \to j$. So $\eta_j = F(f) \circ \eta_i$ for all $f: i \to j$. There exists a unique morphism $g: A \to \lim F$ such that

Send η to g. Conversely if we have $g: A \to \lim F$, $\eta_i = p_i \circ g$ is a morphism from $A \to F(i)$. So we get $\eta \in \operatorname{Hom}_{\operatorname{Fun}(I,\mathcal{C})}(c_A, F)$.

Definition 1.6. A contravariant functor $F : \mathcal{C} \to \text{Set}$ is **representable** if there exists an object $B \in \mathcal{C}$ and a natural isomorphism $h^B \to F$, where $h^B = \text{Hom}_{\mathcal{C}}(\cdot, B)$. We say that B represents F.

Example 1.3. The functor $P : \text{Set} \to \text{Set}$ given by $S \mapsto \mathcal{P}(S)$ and $(f : S \to T) \mapsto (V \mapsto f^{-1}(V))$ is representable by $\{0, 1\}$.